100 / 110 DRYWELL FUSE
SPECIFICATION

15KV & 25KV SUBMERSIBLE
VACUUM LOAD INTERRUPTERS AND
DRYWELL FUSE ASSEMBLIES

MANUALLY OPERATED / REMOTELY OPERATED
SUBMERSIBLE SWITCHGEAR
WITH LOAD INTERRUPTING SWITCHES AND DRYWELL FUSES

FOR USE WITH SEPARABLE CONNECTORS FOR
15KV / 95KV BIL and 25KV / 125KV BIL THREE-PHASE
ALTERNATING-CURRENT SYSTEMS
TABLE OF CONTENTS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Scope</td>
<td>3</td>
</tr>
<tr>
<td>2 Definitions</td>
<td>3</td>
</tr>
<tr>
<td>3 Construction Requirements</td>
<td>3</td>
</tr>
<tr>
<td>3.1 Electrical</td>
<td>3</td>
</tr>
<tr>
<td>3.2 Fusing</td>
<td>4</td>
</tr>
<tr>
<td>3.3 Ratings</td>
<td>4</td>
</tr>
<tr>
<td>3.4 Tank Construction</td>
<td>5</td>
</tr>
<tr>
<td>4 Dielectric</td>
<td>5</td>
</tr>
<tr>
<td>5 Manual Operating Provisions</td>
<td>5</td>
</tr>
<tr>
<td>6 Switch Operating Mechanisms</td>
<td>6</td>
</tr>
<tr>
<td>7 Position Indicators</td>
<td>6</td>
</tr>
<tr>
<td>8 Motor Operating Provisions</td>
<td>6</td>
</tr>
<tr>
<td>9 Terminations</td>
<td>6</td>
</tr>
<tr>
<td>10 Bushing Designation</td>
<td>6</td>
</tr>
<tr>
<td>11 Nameplate</td>
<td>6</td>
</tr>
<tr>
<td>12 Testing Requirements</td>
<td>7</td>
</tr>
<tr>
<td>12.1 Tank</td>
<td>7</td>
</tr>
<tr>
<td>12.2 Electrical</td>
<td>7</td>
</tr>
<tr>
<td>13 Shipping Requirements</td>
<td>7</td>
</tr>
<tr>
<td>14 Documentation</td>
<td>7</td>
</tr>
</tbody>
</table>
1. **Scope**
This specification applies to liquid-insulated 15kV and 25kV 60Hz class three-phase gang-operated submersible load interrupting switches with maximum continuous ratings of 600A and drywell fuse assemblies with maximum continuous ratings of 50A for use on underground distribution systems utilizing dead front equipment.

2. **Definitions**
The definitions of terms contained in this specification, or in other standards referred to in this document, are not intended to embrace all the legitimate meanings of the terms. They are applicable only to the subject treated in this specification. Any documents or industry standards referred to shall be of the latest revision.

2.1 **ASTM**
American Society for Testing and Materials

2.2 **ANSI**
American National Standards Institute

2.3 **IEEE**
Institute of Electrical and Electronic Engineers

2.4 **NEMA**
National Electrical Manufacturers Association

2.5 **IEC**
International Electrotechnical Commission

2.6 **AISI**
American Iron and Steel Institute

2.7 **Bus** (As used in this specification)
A three-phase junction common to two or more ways

2.8 **Way**
A three-phase circuit entrance to a switching assembly

2.9 **Switched Way**
A way connected to the bus through a three-pole, group operated switch

2.10 **Tapped Way**
A way solidly connected to the bus

2.11 **Fused Way**
A way connected to the bus through a drywell fuse assembly

3. **Construction Requirements**

3.1 **Electrical**
3.1.1 The switchgear shall be of total dead front design. All energized parts shall be sealed behind a welded ground plane to avoid the possibility of exposure to electrical shock when separable connectors are in place.

3.1.2 The load interrupter switch shall be a three-phase gang-operated device of a quick-make, quick-break design that operates at a speed independent of the speed of the external operating handle and shall utilize vacuum contacts rated at 600A continuous. The mechanism shall have a minimum life of 10,000 operations at a full 600A load without the need for service, replacements, or adjustments.
3.1.3 The fuse holders shall be drywell holders mounted individually or in groups of two or three. The fuse holder shall be capable of accepting fuses from any US manufacturer intended for use in a drywell up to and including 50A capacity. Full-range current limiting fuses, (Cooper) type X Limiter and Trans-Guard FX (KHT) are Trayer recommended.

3.1.4 The visible disconnect device, when installed, shall be a three-phase two position gang-operated open-blade switch device of a quick-make, quick-break design that operates at a speed independent of the speed of the external operating handle and shall be rated at 600A continuous and 20,000A asymmetrical momentary, to be used in series with a load interrupter switch to establish a visible open on the circuit. The contacts of the visible disconnect device shall be clearly visible in the open and closed positions through a window located on the tank face adjacent to the operating handles. The operating handle of the visible disconnect device shall be externally interlocked with the operating handle of the load interrupter in such a manner as to prevent the visible disconnect device from performing loadbreak operations. The interlock shall be clearly visible to the operator for the purpose of confirming proper operation.

3.1.5 All internal bus shall be of copper bar or copper ribbon; no braid shall be used and no aluminum shall be used. All internal electrical clearances shall be a minimum of 2" to maintain a 125kV BIL rating for the bus work. All connections shall be double nut secured to maintain connection integrity.

3.1.6 All wire penetrations into the switch tank shall grouped and potted in a liquid-tight synthetic dielectric compound and the potted group shall be o-ring sealed to the tank.

3.2 Fusing
The fuse holder shall be interlocked with the switch handle so that the handle must be open before the fuse can be removed, thereby preventing the fuse from being removed while under load.

3.3 Ratings

<table>
<thead>
<tr>
<th>Ratings for the Unit/System Voltage</th>
<th>15kV</th>
<th>25kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Voltage</td>
<td>15kV</td>
<td>25kV</td>
</tr>
<tr>
<td>Maximum Design Voltage</td>
<td>15.5kV</td>
<td>27kV</td>
</tr>
<tr>
<td>BIL Phase-to-Phase, Phase-to-Ground</td>
<td>95kV</td>
<td>125kV</td>
</tr>
<tr>
<td>BIL Across Open Contacts</td>
<td>95kV</td>
<td>150kV</td>
</tr>
<tr>
<td>One Minute Withstand (60Hz)</td>
<td>34kV</td>
<td>40kV</td>
</tr>
<tr>
<td>Continuous Current</td>
<td>600A</td>
<td>600A</td>
</tr>
<tr>
<td>Load Switching</td>
<td>600A</td>
<td>600A</td>
</tr>
<tr>
<td>Load Break Operations at Full Load</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>Maximum Interrupting Current (Symmetrical) of a Fused Way (with current limiting fuses)</td>
<td>50kA</td>
<td>50kA</td>
</tr>
<tr>
<td>Maximum Three-Time Emergency Interrupting Rating</td>
<td>2000A</td>
<td>2000A</td>
</tr>
<tr>
<td>Momentary Make and Latch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600A ways (Asymmetrical)</td>
<td>20kA</td>
<td>20kA</td>
</tr>
<tr>
<td>200A ways (Asymmetrical)</td>
<td>15kA</td>
<td>15kA</td>
</tr>
</tbody>
</table>

3.4 Tank Construction
3.4.1 The entire assembly shall be constructed of AISI type 304 stainless steel and shall be fully welded using AISI type 308 filler material to maintain the corrosion resistant properties. Bolted/gasketed tank assemblies will not be allowed.

3.4.2 The tank body shall be constructed with material thicknesses ranging from AISI 14ga. to AISI 7 ga. as appropriate depending on the size and configuration of the tank body.

3.4.3 All bushing wells to be welded to make them an integral part of the tank. No bolted/gasketed bushings shall be allowed.

3.4.4 Bushings shall be arranged to allow for easy cable training while maintaining a minimum 4” spacing between 200A bushing wells and 5” spacing between 600A bushings.

3.4.5 The entire switch tank shall be hermetically sealed and be fully submersible with all tank penetrations being double o-ring sealed.

3.4.6 No external portion of the tank or its accessories shall trap water.

3.4.7 Lifting lugs shall be welded to the tank so that the switch will remain level when being lifted. Lifting lugs shall have a rounded contour to limit damage to lifting slings.

3.4.8 Parking stands shall be provided and located to allow each way to be parked with a minimum elbow and cable movement distance. (For parking stand dimensions see ANSI C57.12.26-1975, Fig 5[2])

3.4.9 One grounding provision with a ½” 13 NC stainless steel nut, 7/16” (11.1mm) deep, shall be provided for each way and shall be located allowing easy access for grounding each way. The grounding provision shall be welded to the switch tank.

4. Dielectric

4.1 Unit shall utilize a liquid dielectric to insulate all internal components. Load interruption shall take place in sealed vacuum contact bottles to protect the liquid insulation from exposure to arcing during load interruption.

4.2 Provisions for adding liquid insulation shall be provided by means of a 1” NTP fill port located on the front face (for front operated equipment) or the liquid level gauge port on top of the unit (for top operated equipment) and provisions for draining or sampling shall be made available as an optional feature.

4.3 A liquid level indicating device shall be provided to positively identify a low liquid level condition. This device shall display, in white letters on a red background, the words “LOW OIL” when the liquid level drops below prescribed limits. This device shall be static with no moving parts and shall be unaffected by the environmental conditions for the life of the switchgear assembly.

5.1 Manual operating handles shall move in to close and out to open. The direction of operation shall be apparent.
5.2 Load break switch and visible disconnect device operating handles shall be designed to be easily operated with standard live line tools. The handles shall be of a channel shape and formed from AISI type 304 stainless steel, with the lower edge of sufficient width to support the hook end of standard live line tools, and assist in guiding the hook into the handle opening for live line tool operation. They shall be located where they can be operated either to open or to closed positions with standard live-line tools. The force required to operate the handle shall be such that one average strength person in a standing position can readily operate it.

5.3 Load break switch and visible disconnect operating handles shall be capable of being padlocked in both the open and closed positions and shall be labeled to clearly indicate switch position.

6. Load Break Switch Visible Disconnect Operating Mechanisms

6.1 The load break switch and visible disconnect switch mechanism shall be designed so that operation does not require any special skills, and the closing and opening speeds of the contacts are independent of the speed at which the operating handle is operated.

6.2 The load break switch and visible disconnect switch shall be of a gang-operated, three-phase design so that all contacts of the three phases shall be operated simultaneously with no possibility of single phasing due to teasing of switch handle.

6.3 The load break switch and visible disconnect switch shall be quick-make, quick-break type. Contacts shall be stable in open and closed positions without use of mechanical latches, sear pins or detents.

7. Position Indicators

7.1 Load break switch and visible disconnect switch handles shall act as position indicators that clearly and positively indicate the open and closed positions of the switch mechanisms. Nameplates of a corrosion resistant material shall be fixed to the switch tank adjacent to the operating handle to assist in identifying switch position.

7.2 Visible disconnect switch contact positions shall be clearly visible though a viewing window located near the operating handle.

Provisions for motor operators shall be available as an option.

9. Terminations

The switch bushings shall accommodate cable terminations in accordance with ANSI/IEEE std 386-1977.

10. Bushing Designation

The switch bushings shall be identified and legibly marked adjacent to each bushing with the appropriate phase designation, using a nameplate of stainless steel, or other corrosion resistant material.

11. Nameplate

11.1 A nameplate of stainless steel shall be provided.

11.2 The nameplate shall be securely welded to the tank.

11.3 All letters, schematics, and numbers shall be photo engraved or stamped on the nameplate.
11.4 The nameplate shall contain at least the following information:

11.4.1 Name of manufacturer
11.4.2 Date of manufacture (month and year, for example, 1-90)
11.4.3 Serial number
11.4.4 Model number or style number
11.4.5 Rated maximum voltage
11.4.6 Rated impulse withstand voltage
11.4.7 Rated continuous current
11.4.8 Rated load interrupting current
11.4.9 Rated momentary current
11.4.10 Rated making current
11.4.11 A three-line bushing-oriented schematic diagram, using standard symbols (this may be put on a separate nameplate)
11.4.12 Total weight (including insulating medium)
11.4.13 Type of insulating medium

12. Testing Requirements

12.1 Tank
The finished tank will be pressurized to 7 pounds per square inch using dry nitrogen and tested for leaks using suitable leak detection methodology.

12.2 Electrical

12.2.1 AC hipot for 1 minute phase-to-phase, phase-to-ground, and across open contacts on all ways at 34kV for 15kV equipment and 40kV for 25kV equipment
12.2.2 Continuity test all circuits
12.2.3 Resistance test all circuits
12.2.4 Test reports certifying the vacuum switch conforms to ANSI C37.72, Test Sequence Paragraph 5.1.5 shall be submitted.

13. Shipping Requirements

13.1 The switch shall be completely assembled, including the correct amount of insulating fluid.
13.2 Switches shall be properly packaged and braced to prevent damage during shipment.

14. Documentation
Instructions and checklists for the inspection, installation, and maintenance of the switch shall be provided.